相干光正交频分复用系统用的宽可调谐单频光纤激光光源 - 佰腾专利检索

摘要:

本实用新型公开相干光正交频分复用系统用的宽可调谐单频光纤激光光源,包括高反射率啁啾光纤光栅,高增益光纤,低反射率啁啾光纤光栅,单模半导体泵浦激光器,光波分复用器,光耦合器,光环形器,可调谐光滤波器组件。低反射率啁啾光纤光栅与高反射率啁啾光纤光栅一起作为谐振腔前后腔镜实现激光振荡;从光波分复用器输出的宽光谱激光经过光耦合器分光后一部分通过光环形器进入可调谐滤波器组件,通过可调谐滤波器组件选出任一ITU?T规定标称中心频率对应的波长,其3dB谱宽小于0.1nm,再通过光环形器和光耦合器返回注入谐振腔里面,对谐振腔进行自注入锁定,结合短线性谐振腔结构及其滤波器组实现窄线宽、单一纵模模式的激光激射。 - 佰腾专利检索

申请号: CN201521057304.8 专利名称: 相干光正交频分复用系统用的宽可调谐单频光纤激光光源 申请(专利权)人: [华南理工大学] 发明人: [徐善辉, 杨中民, 张远飞, 冯洲明, 杨昌盛] 其他信息:
1.相干光正交频分复用系统用的宽可调谐单频光纤激光光源,其特征在于包括一个高反射率啁啾光纤光栅(1)、高增益光纤(2)、低反射率啁啾光纤光栅(3)、光波分复用器(4)、单模半导体泵浦激光器(5)、光耦合器(6)、光隔离器(7)、光环形器(8)、可调谐光滤波器组件(9);各部件之间的结构关系是:高增益光纤(2)作为结构紧凑的激光谐振腔的增益介质,低反射率啁啾光纤光栅(3)和高反射率啁啾光纤光栅(1)组成激光谐振腔的前后腔镜,实现激光在腔内的振荡;高反射率啁啾光纤光栅(1)、高增益光纤(2)、低反射率啁啾光纤光栅(3)组成了激光器的线型谐振腔,谐振腔输出的激光经过光耦合器(6)后一部分光通过光环形器(8)进入可调谐光滤波器组件(9)中,通过可调谐滤波器组件(9)选择 任一ITU-T 规定标称中心频率对应的波长,再经由光环形器(8)和光耦合器(6)注入回到激光谐振腔中,经过自注入锁定后的谐振腔激射出ITU-T 规定标称中心频率对应的波长的单频光纤激光;通过调节可调谐滤波器组件能选择不同的ITU-T 规定标称中心频率对应的波长,从而实现宽可调谐范围的单频激光输出;单频激光信号经由光波分复用器(4)的信号端进入光耦合器(6),然后从光隔离器(7)的输出端输出。 2.根据权利要求1所述的相干光正交频分复用系统用的宽可调谐单频光纤激光光源,其特征在于:所述可调谐光滤波器组件(9)是通过设定自由光谱范围和带宽去实现选择通过或者阻止光路系统中相应的波长的器件,在结构上包括一个可调谐光滤波器或者多个可调谐光滤波器的组合。 3.根据权利要求2所述的相干光正交频分复用系统用的宽可调谐单频光纤激光光源,其特征在于:所述可调谐光滤波器包括声光可调谐滤波器、电光可调谐滤波器、机械式光可调谐滤波器或热光可调谐滤波器。 4.根据权利要求1所述的相干光正交频分复用系统用的宽可调谐单频光纤激光光源,其特征在于:所述可调谐光滤波器组件(9)的自由光谱范围为0.5~500 nm,3 dB带宽小于0.1 nm。 5.根据权利要求1所述的相干光正交频分复用系统用的宽可调谐单频光纤激光光源,其特征在于:所述光纤激光光源是直腔结构,其前腔镜是低反射率啁啾光纤光栅(3),后腔镜采用高反射率啁啾光纤光栅(1);所述反射率啁啾光纤光栅(3)是对激励光信号低反,反射率为10%~90%,其3dB反射谱宽为1~40 nm;所述高反射率啁啾光纤光栅(1)是对泵浦光高透,透射率大于90%,而对激励光信号高反,反射率大于95%,其3dB反射谱宽为1~40 nm。 6.根据权利要求1所述的相干光正交频分复用系统用的宽可调单频光纤激光光源,其特征在于:所述高增益光纤(6)的单位长度增益大于0.2 dB/cm,光纤长度为0.5~100 cm。
< p > 相干光正交频分复用系统用的宽可调谐单频光纤激光光源 < /p > < p > 技术领域 < /p > < p > 本实用新型涉及到相干光通信、光纤传感、相干光谱合束等领域中可用于相干光正交频分复用系统的光纤激光技术,具体涉及相干光正交频分复用系统用的输出波长可调谐范围大、窄线宽的宽可调谐单频光纤激光光源。 < /p > < p > 背景技术 < /p > < p > 相干光正交频分复用(CO-OFDM)是多载波调制技术的一种,可以有效地解决由色散信道引起的符号间干扰问题,能够广泛地用于各种宽带无线和有线通信中。这种抗色散能力在强调高速、宽带能力的今天显得尤为重要。相干光正交频分复用系统中的关键光器件包括精确可调的窄线宽激光器以及中心波长和带宽都可调的波长选择开关。单频光纤激光器是指激光谐振腔内以振动单一纵模(单频)的形式输出,其特征为激光光谱线宽非常窄,最高可达到10 < sup > -8 < /sup > nm,比一般常用的窄线宽DFB半导体激光器高出了几个数量级,可以很好地抑制相位噪声而实现大容量高速光传输网络中对信号相位的探测。另一方面,对于具有波长动态分配的光网络系统,可以采用输出激光波长宽可调谐的光纤激光光源作为载波信号源。 < /p > < p > 当前可调谐单频激光光源的研究工作集中在使用稀土离子高掺杂石英光纤或者掺杂固态晶体作为激光的增益介质,采用短直腔、环形腔或复合腔等结构,在其光路中插入可靠性低的体光学元器件(偏振控制器、热光晶体、电光晶体或F-P标准具等)用作消除空间烧孔、维持单频运转或激光频率调节,但都存在打破全光纤化结构、掺杂离子浓度无法进一步提高、谐振腔腔体较长、存在随机跳模、容易出现多纵模等一些问题。最大难点是线宽较难做到10kHz以下、噪声较大、调谐范围不连续、长期稳定性较差。 < /p > < p > 实用新型内容 < /p > < p > 本实用新型的目的在于克服现有技术上述中的不足,公开了可用于相干光正交频分复用系统的宽可调谐单频光纤激光光源,通过自注入锁定结构结合短线型谐振腔和可调谐滤波器组一起实现了全光纤结构的宽可调谐范围单频光纤激光光源。 < !-- SIPO < DP n="1" > -- > < /p > < p > 本实用新型的目的通过如下技术方案实现。 < /p > < p > 一种相干光正交频分复用系统用的宽可调谐单频光纤激光光源,包括一个高反射率啁啾光纤光栅、高增益光纤、低反射率啁啾光纤光栅、光波分复用器、单模半导体泵浦激光器、光耦合器、光隔离器、光环形器、可调谐光滤波器组件。各部件之间的结构关系是:高增益光纤作为结构紧凑的激光谐振腔的增益介质,低反射率啁啾光纤光栅和高反射率啁 啾光纤光栅组成激光谐振腔的前后腔镜,实现激光在腔内的振荡。高反射率啁啾光纤光栅、高增益光纤、低反射率啁啾光纤光栅组成了激光器的谐振腔,谐振腔输出的激光经过光耦合器后一部分光通过光环形器进入可调谐光滤波器组件中,通过带宽极窄的可调谐滤波器组件进行任一ITU-T规定标称中心频率对应的波长选择后,再经由光环形器和光耦合器注入回到激光谐振腔中,结合紧凑的短线型腔的结构,经过注入锁定后的谐振腔激射出ITU-T规定标称中心频率对应波长的单频光纤激光。通过调节可调谐滤波器组件可以选择不同的ITU-T规定标称中心频率对应的激光波长,从而实现宽可调谐范围的单频激光输出。单频激光信号经由光波分复用器的信号端进入光耦合器,然后从光隔离器的输出端输出。 < /p > < p > 进一步优化的,所述可调谐光滤波器组件是一种通过一定自由光谱范围和带宽去实现选择通过或者阻止光路系统中特定的波长的器件,在结构上包括但不限于一个或者几个可调谐光滤波器的组合等,在实现方法上包括但不限于声光可调谐滤波器、电光可调谐滤波器、机械式光可调谐滤波器、热光可调谐滤波器等。 < /p > < p > 进一步优化的,所述可调谐光滤波器组件的自由光谱范围为0.5~500nm,3dB带宽小于0.1nm. < /p > < p > 进一步优化的,所述光纤激光器是紧凑的短直腔结构,其前腔镜是低反射率啁啾光纤光栅,后腔镜采用高反射率啁啾光纤光栅;所述反射率啁啾光纤光栅是对激励光信号低反,反射率为10%~90%,其3dB反射谱宽为1~40nm。所述高反射率啁啾光纤光栅是对泵浦光高透,透射率大于90%,而对激励光信号高反,反射率大于95%,其3dB反射谱宽为1~40nm。 < /p > < p > 进一步优化的,所述高增益光纤的单位长度增益大于0.2dB/cm,光纤长度为0.5~100cm。 < /p > < p > 与现有技术相比,本实用新型的技术效果是:可以将厘米量级的高增益光纤作为激光的增益介质,由低反射率啁啾光纤光栅和高反射率啁啾光纤光栅组成谐振腔结构的前后腔镜,在单模半导体激光泵浦源的连续激励下,纤芯中的高增益粒子发生反转,产生受激发射的激光信号,谐振腔输出的宽带激光信号经过光耦合器后一部分光通过光环形器进入可调谐光滤波器组件,经过可调谐滤波器组件的纵模选择后得到ITU-T规定标称中心频率对应波长的单一纵模激光信号,再经由光环形器和光耦合器注入回谐振腔中,经过自注入锁定后的短线型腔就可以激射出ITU-T规定标称中心频率对应的波长的单频激光。通过调节可调谐滤波器组件可以选择不同的ITU-T规定标称中心频率对应的波长的纵模模式,最终实现波长可调谐、符合ITU-T规定标称中心频率的单频激光输出。 < !-- SIPO < DP n="2" > -- > < /p > < p > 附图说明 < /p > < p > 图1为本实用新型一种相干光正交频分复用系统用的宽可调谐单频光纤激光光源的原理示意图。 < /p > < p > 具体实施方式 < /p > < p > 下面结合附图和具体例子对本实用新型的具体实施方式作进一步描述,需要说明的是本实用新型要求保护的范围并不局限于实施例表述的范围,以下若有未特别详细说明之过程,均是本领域技术人员可参照现有技术实现的。 < /p > < p > 如图1,一种相干光正交频分复用系统用的宽可调谐单频光纤激光光源,包括一个高反射率啁啾光纤光栅1、高增益光纤2、低反射率啁啾光纤光栅3、光波分复用器4、单模半导体泵浦激光器5、光耦合器6、光隔离器7、光环形器8、可调谐光滤波器组件9。各部件之间的结构关系是:高增益光纤2作为结构紧凑的激光谐振腔的增益介质,低反射率啁啾光纤光栅3和高反射率啁啾光纤光栅1组成激光谐振腔的前后腔镜,实现激光在腔内的振荡。高反射率啁啾光纤光栅1、高增益光纤2、低反射率啁啾光纤光栅3组成了激光器的谐振腔,谐振腔输出的激光经过光耦合器6后一部分光通过光环形器8进入可调谐光滤波器组件9中,通过带宽极窄的可调谐滤波器组件9进行带宽极窄的ITU-T规定标称中心频率对应的波长进行选择后,再经由光环形器8和光耦合器6注入回到激光谐振腔中,结合紧凑的短线型腔的结构,经过自注入锁定后的谐振腔激射出ITU-T规定标称中心频率对应的波长的单频光纤激光。通过调节可调谐滤波器组件可以选择不同的ITU-T规定标称中心频率对应的波长,从而实现宽可调谐范围的单频激光输出。单频激光信号经由光波分复用器4的信号端进入光耦合器6,然后从光隔离器7的输出端输出。通过可调谐滤波器组件选出任一ITU-T规定标称中心频率对应的波长,其3dB谱宽小于0.1nm。 < /p > < p > 实施例1 < /p > < p > 本例的宽带光纤光栅1中心反射波长为激光输出波长1552.52nm,3dB反射谱宽为40nm,本例中心波长反射率大于99.95%。低反射率啁啾光纤光栅3耦合输出光栅的中心反射波长为激光输出波长1552.52nm,其3dB带宽为40nm,中心波长反射率为10~95%,本例中心波长射率为60%。高反射率啁啾光纤光栅1和低反射率啁啾光纤光栅3成一个具有较宽的光谱范围选择及滤波作用的功能模块。其中,高反射率啁啾光纤光栅1和高增益光纤2用熔接或端面对接方式连接;高增益光纤2和低反射率啁啾光纤光栅3间采用光纤端面研磨抛光与腔镜紧密对接方式连接。光耦合器的分光比例为从1:99到50:50,本例使用的是10:90分光比例的光耦合器6。本例使用的可调谐光滤波器组件9为F-P腔可调谐滤波器,其自由光谱范围达到70nm,3dB带宽为0.02nm,工作波长范围从1520-1570nm。 < /p > < p > 泵浦方式采用后向泵浦,由单模半导体泵浦激光器5产生泵浦光经由光波分复用器3的泵浦端输入,经由低反射率啁啾光纤光栅3到高增益光纤2的纤芯中,进行纤芯泵浦。泵浦光不断抽运纤芯中的增益粒子,使其达到粒子数反转,受激发射产生激光信号。谐振腔输出的连续光信号经过10:90的光耦合器6后,90%的信号光通过光环形器8进入F-P腔可调谐滤波器9中,然后经过调节可调谐滤波器选出符合ITU-T标准规定,波长为1552.52nm(标称中心频率193.10THz)的单一纵模后得到单频激光信号,再经由光环形器8和光耦合器6注入回谐振腔中,经过自注入锁定后的谐振腔产生波长为1552.52nm的单频激光 信号。激光信号经由光波分复用器4的信号端进入光耦合器6,10%的单频激光信号从光隔离器7的输出端输出,通过调节F-P腔可调谐滤波器可以获得可调谐波长范围达到40nm,线宽<10kHz的符合ITU-T标称中心频率对应波长的单频激光输出。 < !-- SIPO < DP n="3" > -- > < /p >
< p > 相干光正交频分复用(CO-OFDM)是多载波调制技术的一种,可以有效地解决由色散信道引起的符号间干扰问题,能够广泛地用于各种宽带无线和有线通信中。这种抗色散能力在强调高速、宽带能力的今天显得尤为重要。相干光正交频分复用系统中的关键光器件包括精确可调的窄线宽激光器以及中心波长和带宽都可调的波长选择开关。单频光纤激光器是指激光谐振腔内以振动单一纵模(单频)的形式输出,其特征为激光光谱线宽非常窄,最高可达到10-8nm,比一般常用的窄线宽DFB半导体激光器高出了几个数量级,可以很好地抑制相位噪声而实现大容量高速光传输网络中对信号相位的探测。另一方面,对于具有波长动态分配的光网络系统,可以采用输出激光波长宽可调谐的光纤激光光源作为载波信号源。 < /p > < p > 当前可调谐单频激光光源的研究工作集中在使用稀土离子高掺杂石英光纤或者掺杂固态晶体作为激光的增益介质,采用短直腔、环形腔或复合腔等结构,在其光路中插入可靠性低的体光学元器件(偏振控制器、热光晶体、电光晶体或F-P标准具等)用作消除空间烧孔、维持单频运转或激光频率调节,但都存在打破全光纤化结构、掺杂离子浓度无法进一步提高、谐振腔腔体较长、存在随机跳模、容易出现多纵模等一些问题。最大难点是线宽较难做到10kHz以下、噪声较大、调谐范围不连续、长期稳定性较差。 < /p >
使用键盘键 进行切换

© Copyright  2017  江苏佰腾科技有限公司  版权所有  |

苏ICP备09077504号  

佰腾专利检索

 苏公网安备 32041202001279号

系统日志

数据更新

 建议使用Chrome、360浏览器

个性化你的检索平台
联系我们
专利探索者
群号:580132322
专利探索者
媛媛
1402342359
专利探索者
小倩
3326349102
意见反馈